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Abstract

The current study investigates the disc brake squeal by using an annular disc in contact with two pads subject to distributed

friction stresses. The disc and pads are modeled as rotating annular and stationary annular sector plates, respectively.

Friction stress is described on the deformed disc surface as distributed non-conservative friction-couples and frictional

follower forces. From disc doublet-mode and multiple-mode models, the mode-coupling mechanism influenced by disc

rotation is examined. In automotive applications, the frictional mode-coupling resulting from friction couple is shown to be

the major mechanism for dynamic destabilization, whereas the effects of disc rotation on flutter destabilization are found to

be small. On the verge of stop, however, the rotation effects effectively stabilize the steady sliding. This comprehensive brake

model has shown that there is a speed corresponding to maximum squeal propensity for each flutter mode.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Brake squeal vibration has been a challenging problem to solve in automotive industry. Many researchers
have investigated mechanisms for the generation of squeal; however, a complete explanation of squeal
generation has not yet been available due to complexity of the problem. One common direction of study in
brake squeal has been the numerical linear stability analysis predicting the instabilities of the system
equilibrium.

The friction-engaged disc brake model can be discretized by means of the assumed modes method or the
finite element (FE) method resulting in the finite degree-of-freedom matrix form of the equations of motion
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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(Kinkaid et al. [1] and Ouyang et al. [2]):

M €xþ ðGþDÞ _xþ ðKs þ KnsÞx ¼ 0, (1)

where M, G and D are the symmetric mass, skew-symmetric gyroscopic and symmetric damping matrices,
respectively. Ks and Kns are the symmetric stiffness and non-symmetric frictional mode-coupling matrices,
respectively, for the system [2].

Basically, the approach on the stability criteria of the linearized equations of motion is based on the trace of
the system eigenvalues. The general stability theories on the dynamic system under general loading cases have
been introduced in Refs. [3–7]. The analytical and numerical stability results on the two rigid rotating discs in
contact under damping, gyroscopic and circulatory loading have been introduced as well [8]. However, a
comprehensive analytical formulation on the disc brake application has not been proposed before due to its
geometric and dynamic complexity.

In the disc brake literature, Kns has been constructed from two non-conservative friction loadings: the
frictional follower force [9–11] and the friction couple [12–15]. For comparison of these quantities, Flint and
Hulten [15] used a flexible beam in contact with two flexible pads for a disc brake modeling and investigated
the contribution of the two friction types. Heilig and Wauer [16] examined the contribution of the two friction
types from a disc brake model with a rotating ring in contact with two-point masses. They all concluded that
frictional follower force in application to disc brake system has an insignificant influence on response stability.
Another modeling aspect influencing the elements of Kns is the choice of area loaded by friction stresses: point
contact ([9,14,16,17]) vs. distributed-loaded contact ([11–13,15,18–24]). The squeal propensity of the
distributed-loaded contact model was examined and it was concluded that the contact area (particularly,
contact span angle) strongly influences the flutter instability in Ref. [23]. The validity of the point contact
model for brake squeal mechanism will be later addressed in this paper.

The gyroscopic terms G _x are typically ignored on the basis that brake squeal vibrations normally occur at
low operational speeds. However, the work by Ouyang et al. introduced the effect of moving contact loads
([14,18]) or the gyroscopic effect [19]. From these models, they concluded that the instability of disc brake is
dependent of rotation speed. Heilig and Wauer [16] and Hochlenert et al. [17] investigated the gyroscopic
effects from a rotating disc in point-contact with two stationary pads. They provided a consistent conclusion
that rotation speed influences the destabilization of the disc brake system. However, the analytical explanation
on gyroscopic effect as a squeal propensity was not provided in detail.

Lastly, the D _x terms take on the role of system damping, either in stabilizing or destabilizing manner. The
damping types used in the previous disc brake models are the positive structural damping, the negative
damping obtained from the linearization of friction-speed curve, and the positive radial frictional damping.
Hochlenert et al. [17] included the frictional damping from the radial component of friction stresses and
showed that the system damping decreases at a rate of 1/O, where O is the rotation rate. Kung et al. [20]
indicated that the negative damping stemming from the negative slope of friction coefficient contributes to the
destabilization of the brake system at low speeds.

As mentioned above, many models and results on brake squeal have been provided. However, disc brake
squeal still remains an elusive problem. One major limitation at this point is that the models do not provide a
comprehensive explanation on brake squeal mechanisms. For example, the mode-merging approach has been
useful to demonstrate the mode-coupling instability as one squeal mechanism at the static steady-sliding
equilibrium, but limited in investigating squeal propensity for disc rotation speed. On the other hand, the
rotating disc models have focused on the rotation effect on the equilibrium instability with the lack of
explanation on mode-coupling mechanism. The motivation of this study is to resolve these limitations for
understanding disc brake squeal mechanism.

The goal of this paper is to describe brake squeal mechanisms using a comprehensive dynamic model. The
stability of the homogeneous solutions of Eq. (1) is interpreted in terms of binary flutter resulting from the
modal interaction of two closely spaced modes [21–24]. The disc brake system is modeled as a rotating disc
and two flexible pads, where the linearized contact model for a thin plate [17] is utilized. The analytical and
numerical investigations enable us to evaluate the parametric contribution to the dynamic instability and the
corresponding squeal mechanisms. Moreover, the results of the comprehensive model provide the physical
background for the further approximations and simplifications of the theoretical disc brake squeal model.
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2. Model development

The dynamic instability of disc-pad coupled brake system subject to friction stresses on distributed
deformable contact surface is investigated. The disc is subject to the clamped boundary condition at the inner
radius (ai) of the rotating shaft with a constant rotating speed, O and the free boundary condition at the outer
radius (ao). The homogeneous pad is modeled with free boundary conditions at all edges. It is assumed that the
pad is loaded and supported under the uniform pressure pressed by the rigid caliper (or its piston). Fig. 1
describes the system configuration and coordinate systems to be used in the analysis.

The disc and pads are connected with linear contact stiffness (kc) of the friction material in the manner that
one end of the contact stiffness is fixed to the pad contact surface and the other end is in contact with the disc
surface in the Z direction. A uniform contact pre-stress (po) is symmetrically applied over the contact area on
both sides of the rotating disc. Figs. 2 and 3 illustrate the contact kinematics described on the currently
deformed surfaces of the disc and pads. ra and ua are the position and displacement vectors of the perturbed
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Fig. 1. Rotating disc and two stationary flexible pads: (a) model configuration; (b) reference ðr; yÞ and local ðr;jÞ coordinates;
No ¼ po � ðcontact areaÞ.
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contact position a of the disc. ub is the displacement vector of the perturbed contact position b of the top pad.
na and nb are unit normal vectors on the surfaces of the disc and top pad. a0 and c0 are in contact at current
time t, where hrb0 ; eri ¼ hrc0 ; eri and hrb0 ; ehi ¼ hrc0 ; ehi for all time and h�; �i denotes the inner product. Here, the
transverse displacement of the disc is denoted as w̃ in the local coordinates ðr;jÞ and w in the reference
coordinates ðr; yÞ. wp1 is the transverse displacement of the top pad.

The contact displacement of the disc at a in Figs. 2 and 3 take the form:

ua ¼ ra � r � er þ
h

2
ez

� �
, (2)
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where

ra ¼ r � er þ w̃ðr;j; tÞez þ
h

2
na, (3)

na ¼
rfa

rfaj j
, (4)

rfa ¼ ez �
@w̃

@r
er �

@w̃

r@j
eh. (5)

Here the linearized contact model for a thin annular plate [17] is applied such that the contact displacement,
ua0 of the disc at a0 can be linearly found from ua at a by Taylor expansion with the perturbed steps, Dr̄ and Dj̄:

ua0 ¼ ua þ
@ua
@r

Dr̄þ
@ua
@j

Dj̄þ h:o:t:, (6)

Dr̄ ¼
h

2

@w̃ðr;j; tÞ
@r

þ h:o:t:, (7)

rDj̄ ¼
h

2

@w̃ðr;j; tÞ
r@j

þ h:o:t:, (8)

where h:o:t: denotes higher order terms. Similarly, the displacement vector of the contact stiffness (friction
material) of the top pad at c0 is expressed as the following by definition:

uc0 ¼ hub0 ; erier þ hub0 ; ehieh þ hua0 ; eziez, (9)

where

ub0 ¼ ub þ
@ub
@r

Dr̄p1 þ
@ub
@y

Dȳp1 þ h:o:t:, (10)

ub ¼
hp

2
�
@wp1

@r
er þ

hp

2r
�
@wp1

@y
eh þ wp1ez þ h:o:t. (11)

Dr̄p1 ¼ �
hp

2

@wp1ðr; y; tÞ
@r

þ h:o:t:, (12)

rDȳp1 ¼ �
hp

2

@wp1ðr; y; tÞ
r@y

þ h:o:t. (13)

The velocity vector of the rotating disc at the perturbed position, a corresponding to ðr; yÞ of the
unperturbed neutral plane is obtained by the time-derivative in the reference coordinates (Fig. 1b):

Va ¼
Dra

Dt
, (14)

where the coordinate transformation is given by the differentiation in the local coordinates (Fig. 1b) such that:

Dw̃ðr;j; tÞ
Dt

¼
@wðr; y; tÞ

@t
þ O �

@wðr; y; tÞ
@y

. (15)

Again, the velocity at a0 of the disc is obtained from Taylor expansion such that:

Va0 ¼ Va þ
@Va

@r
Dr̄þ

@Va

@y
Dȳþ h:o:t. (16)

The velocity vector at c0 of the stationary top pad is simply the partial time derivative of the displacement
vector at c0 such that:

Vc0 ¼
@uc0

@t
. (17)
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Fig. 4. Contact stresses at a0 and c0 in current configuration.
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Consequently, the direction vector of the relative velocity at the current contact locations, a0, c0 in the reference
coordinates ðr; yÞ can be expressed in the linearized form at the steady-sliding equilibrium by taking Taylor
expansion up to the 1st order such that:

dðf iÞ ¼ djf i¼0
þ
XNf

i¼1

@fdðf iÞg

@f i

����
f i¼0

� f iðr; y; tÞ

" #
þ h:o:t. (18)

where fi and Nf are the system variables and the number of variables, respectively, of:

d ¼
Va0 � Vc0

jVa0 � Vc0 j
. (19)

The friction and normal stresses acting at a0 (Fig. 4) are given by:

F ¼ �m1 �N1 � d, (20)

N1 ¼ �N1 � na0 , (21)

where

na0 ¼ na þ
@na
@r

Dr̄þ
@na
@y

Dȳþ h:o:t. (22)

The force balance on a single contact spring element in Z direction provides the following relationships:

N1

jF1j

( )
¼

po þ kcðw� wp1Þ �
m1po

r
@w
@y þ h:o:t:

m1N1

( )
(23)

Here the friction–speed relationship is proposed as the function of the relative velocity [25] such that:

m1ðr; tÞ ¼ mk þ ðms � mkÞ � e
�ajVa0 �Vc0 j, (24)

where ms, mk and a are the control parameters determining the magnitude and the slope of the friction
coefficient.

The virtual work and strain energy by the contact stresses over the top contact area are expressed as:

dW top ¼

Z yc=2

�yc=2

Z ro

ri

fhð�N1 � F1Þ; duc0 i þ hðN1 þ F1Þ; dua0 ig � r dr dy, (25)
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U c;top ¼
kc

2

Z yc=2

�yc=2

Z ro

ri

ðhub0 ; ezi � huc0 ; eziÞ
2
� r dr dy, (26)

where yc, ri and ro are the contact arc angle, the inner and outer radii, respectively, of the contact area, and
where ua0 and uc0 are expanded up to 2nd order from Eqs. (6) and (9). Similarly, the virtual work and contact
strain energy on the bottom contact are derived as well. Therefore, the total virtual work and contact strain
energy of this disc brake system are obtained from:

dW ¼ dW top þ dWbottom, (27)

Uc ¼ U c;top þUc;bottom (28)

From the discretization of Lagrange equations by modal coordinates, the friction-coupled equations of
motion are given by:

d

dt

@L

@ _am

� �
�
@L

@am

¼
XN

n¼1

QmnðanÞ; m ¼ 1; . . . ;N, (29)

L ¼ T � ðU þU cÞ, (30)

where U is the total strain energy of the disc and two pads, and

T ¼ Tp1 þ Td þ Tp2, (31)

Td ¼
1

2
rh

Z 2p

0

Z ao

ai

@wðr; y; tÞ
@t

þ O
@wðr; y; tÞ

@y

� �2
� r dr dy, (32)

Tp1 ¼
1

2
rphp

Z yc=2

�yc=2

Z ro

ri

@wp1ðr; y; tÞ
@t

� �2
r dr dy, (33)

Tp2 ¼
1

2
rphp

Z yc=2

�yc=2

Z ro

ri

@wp2ðr; y; tÞ
@t

� �2
r dr dy, (34)

dW �
XN

m¼1

XN

n¼1

QmnðanÞ � dam. (35)

Here, p1 and p2 denote the top and bottom pads and the modal coordinates, a ¼ fqp1 q qp2gT correspond to
the disc and two pad modes.

The transverse displacement of the disc is discretized by the first Nd=2 eigenfunctions of a stationary
disc [23]:

wðr; y; tÞ ¼
XNd=2

n¼1

RnðrÞ � fcos ny � q2n�1ðtÞ þ sin ny � q2nðtÞg, (36)

where fRnðrÞgn¼1;...;Nd=2 is the radial eigenfunction with the nth nodal diameter described by Bessel functions.
Approximations to the flexible mode shapes of the pad are obtained by the Rayleigh–Ritz method. The rigid
body modes of the pad are found using a geometric calculation of the mass moments of inertia for the pad.
As a result, the transverse displacement of the top and bottom pad, respectively, can be rewritten from
Refs. [21,24] in the modal expansion form:

wp1ðr; y; tÞ ¼
XNp

k¼1

W kðr; yÞ � q
p1
k ðtÞ, (37)



ARTICLE IN PRESS
J. Kang et al. / Journal of Sound and Vibration 324 (2009) 387–407394
wp2ðr; y; tÞ ¼
XNp

k¼1

W kðr; yÞ � q
p2
k ðtÞ, (38)

where fW kðr; yÞgk¼1;...;Np
is the kth mode shape of the pad including both flexible and rigid body modes, and Np

is the number of truncated pad modes. The rigid modes of the pad are obtained by small angle approximation
and their second order terms are neglected in Eqs. (25) and (26). The total number of the modes used in the
disc-pad coupled model is N ¼ Nd þ 2Np. Substituting Eqs. (36)–(38) along with the normalization relations

of rhp
R ao

ai
R2

n � r dr � 1 and rphp

R yc=2
�yc=2

R ro
ri
ðW 2

kÞr dr dy � 1 into Eqs. (32)–(34) provide the following equations

of motion:

€aþ ðGþDÞ_aþ ðKs þ KnsÞa ¼ 0, (39)

where all matrices are N�N and arise from virtual work terms in Appendix A in the following form:

D ¼ Cþ Rd þNs, (40)

Ks ¼ diagðo2
nÞ þ Aþ P, (41)

Kns ¼ Bþ F. (42)

Here Gð¼ �GT
Þ, Cð¼ 2xn � diagðonÞÞ, Rdð¼ RT

d Þ and Nsð¼ NT
s Þ are the gyroscopic, structural modal damping,

radial dissipative, and friction-slope matrices, respectively. on is the undamped natural frequencies of the
uncoupled disc and pad components. Að¼ AT

Þ and Pð¼ PTÞ are the contact stiffness and pre-load stiffness
matrices within the symmetric stiffness matrix. In the non-symmetric stiffness matrix, BðaBTÞ is the non-
symmetric non-conservative work matrix produced by friction couple. The additional non-symmetric
matrix, FðaFTÞ represents the non-conservative work due to frictional follower forces on the disc and pad
contact surface.

In the stiffness matrix, the effect of P and F on the squeal propensity of disc brake system
is of concern because the FE method of commercial disc brake system including these effects has
not been developed. It is important to note that P and F are eliminated if the contact stress is
defined on the undeformed surface of the disc without rotation. A and B have been developed from
the disc-pad coupled system with contact forces defined on the undeformed disc surfaces [21–24].
Here the symmetric stiffness matrix A determines the frequencies of the coupled system with respect to the
contact stiffness between the disc and pads. The non-symmetric stiffness matrix B has been found to
be a principal destabilizing component in coupled-mode stability analysis [15,21–24]. Rd was found
to stabilize the friction-engaged disc with decreasing speed [17]. The contribution of G, Ns, P and F is yet to
be addressed.

A key issue is to provide a physical interpretation of the comprehensive equations of motion (39). This task
is not merely to determine the overall stability of steady sliding in the system, but to conduct analytical
investigation for the contribution of physical parameters to the onset of instability. For this purpose, the
system is simplified to a reduced-order model. A one-doublet mode model [23] can be used for providing the
comprehensive perspective on binary flutter in the linear squeal analysis.
3. Stability analysis and results

3.1. The reduced-order model: single-doublet mode approximation

For this work, the pad is assumed to be stationary and rigid, and Eq. (39) is reduced for a single-doublet
mode pair (sine and cosine modes) such that:

wðr; y; tÞ ¼ RnðrÞ � fcosðnyÞ � a2n�1 þ sinðnyÞ � a2ng. (43)
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By applying the single-doublet modal expansion (43) to Eq. (39), the reduced system matrices for the nth one-
doublet mode pair is constructed in the following (2� 2) matrix form:

G ¼
0 g

�g 0

" #
, (44)

C ¼ 2xnon

1 0

0 1

� �
, (45)

Rd ¼
Rd1 0

0 Rd2

" #
, (46)

Ns ¼
Ns1 0

0 Ns2

" #
, (47)

Ks ¼
O2

1 0

0 O2
2

" #
, (48)

Kns ¼
0 b1

b2 0

" #
, (49)

where g ¼ 2nO is the gyroscopic coupling term, O1 and O2 are the circular natural frequencies of the stiffness-
coupled system ðkca0; m ¼ 0Þ and each component of the matrices is described in Appendix B. Here, the non-
symmetric stiffness elements, b1 and b2 are the essential part reflecting the frictional mode-coupling between
two modes subject to both the non-conservative friction couple and the frictional follower force loading. The
linear stability of the system with the matrices of Eqs. (44)–(49) is qualitatively investigated in terms of binary
flutter in the following.

3.2. The stability criterion

The Routh–Hurwitz criterion is applied for the following characteristic equation of the single-doublet mode
model of the disc brake system:

l4 þ c1l
3
þ c2l

2
þ c3lþ c4 ¼ 0, (50)

where

c1 ¼ D1 þD2, (51)

c2 ¼ O2
1 þ O2

1 þD1D2 þ g2, (52)

c3 ¼ D2O2
1 þD1O2

2 � ðb2 � b1Þg, (53)

c4 ¼ O2
1O

2
2 � b1b2 (54)

D1 ¼ 2xnon þ Rd1 þNs1, (55)

D2 ¼ 2xnon þ Rd2 þNs2, (56)

with D1 and D2 assumed to be positive. From (B.7) and (B.8), b140 and b2o0 automatically result in:

ci40; i ¼ 1; 2; 3; 4. (57)
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The necessary and sufficient conditions for stability take the form:

c1c2 � c340, (58)

ðc1c2 � c3Þc3 � c21c440. (59)

From Eqs. (58)–(59) and Eqs. (C.1) and (C.2) of Appendix C, instability occurs for damping approaching zero
(D1!þ0 and D2!þ0) and ga0 when either of the following conditions is met:

lim
D1;D2!þ0

ðc1c2 � c3Þ ! �ðb1 � b2Þgo0, (60)

lim
D1;D2!þ0

fðc1c2 � c3Þc3 � c21c4g ! �fðb1 � b2Þgg
2o0. (61)

These indicate that the friction-engaged doublet modes without damping are always destabilized by the
gyroscopic term since the frictional mode-coupling between a doublet mode pair is non-zero and non-
conservative ðb1ab2Þ. Therefore, the friction-coupled binary modes are subject to gyroscopic destabilization.
It will be further examined by the perturbation method in the later section.

On the other hand, the influences of damping on stability can be seen by letting g ¼ 0 and expressing the
stability conditions (58) and (59) in the perturbation form of �oð� D1Þ and �dð� D2 �D1Þ as described in
Eqs. (C.3) and (C.4) of Appendix C. For the case of �d! 0, the instability occurs when:

lim
�d!0
½fðO2

1 � O2
2Þ

2
þ 4b1b2g þ 2ðO2

1 þ O2
2Þ�

4
o�o0. (62)

From this, it is seen that the flutter instability for a stationary disc requires: ðO2
1 � O2

2Þ
2
þ 4b1b2o0 (which is

also referred to as the mode-coupling instability [23,24]), where the absolute value ð�oÞ of the damping
coefficient can effectively stabilize the system. In contrast, the difference between modal damping ð�dÞ becomes
a destabilizing factor such that the instability for the case of �o! 0 arises when:

lim
�o!0
fðc1c2 � c3Þc3 � c21c4g ¼ b1b2�

2
do0. (63)

Since b1b2o0, due to the frictional mode-coupling of the doublet mode pair, the non-zero ed contributes to the
instability which is called the ‘‘damping instability [26]’’ or the ‘‘smooting effect [27]’’. It is concluded from
Eqs. (60)–(63) that destabilization is associated with ðb1 � b2Þg and b1b2 which will be referred to as the
gyroscopic frictional mode-coupling and the stationary frictional mode-coupling, respectively.

In the automotive application, the contact stiffness of a friction material is much larger than the actual
brake pressure-related term, ðkcbpo � h=r2Þ as referred to Tables 2 and 3, and Refs. [14–16]. From this, it will
be shown that the contributions of ðb1 � b2Þg and b1b2 to the flutter instability highly depend upon the choice
of point or distributed contact modeling. Moreover, since the point contact approximation has been proposed
by several authors [9,14] and [16,17] for the purpose of simplification, it is relevant in this point to discuss
about the validity of this approximation. Table 1 summarizes the order of the two frictional mode-coupling
terms incorporated into two different contact models: the distributed-loaded contact and its point contact
approximation. The major difference between the concentrated point and distributed-loaded contact models is
the order of the stationary frictional mode-coupling, b1b2. In the point contact model, the necessary condition
Table 1

Order of frictional mode-coupling and frequency separation.

Contact model b1, b2 ðb1 � b2Þg b1, b2 ðO2
1 � O2

2Þ
2

Concentrated-point contact b1�OðkcÞ Oðg � kcÞ Oðkc � po � h=r2Þ Oðk2
cÞ

b2�Oðpo � h=r2Þ

Distributed-loaded contact b1�OðkcÞ Oðg � kcÞ Oðk2
c Þ Oðk2

cÞ

b2�OðkcÞ
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Table 2

Nominal values of disc parameters.

Parameter Symbol Value

Outer radius of disc ao 150mm

Inner radius of disc ai 90mm

Young’s modulus E 88.9GPa

Density of disc r 7150 kgm�3

Poisson ratio n 0.285

Thickness of disc h 13.0mm

Table 3

Nominal values of pad parameters.

Parameter Symbol Value

Outer radius of contact ro 142mm

Inner radius of contact ri 100mm

Contact angle yc 621

Young’s modulus Ep 207GPa

Density of pad rp 7820 kgm�3

Poisson ratio np 0.29

Thickness of pad hp 8.0mm

Pre-load No 2000N

Nominal contact stiffness knom 0:35� 1011 Nm�3
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for mode-coupling type instability (due to the stationary frictional mode-coupling) cannot be met since:

ðO2
1 � O2

2Þ
2
þ 4b1b2 ¼ Oðk2

cÞ �Oðkc � po � h=r2Þb0. (64)

Instead, the major mechanism producing the dynamic instability in the point contact model
becomes the gyroscopic frictional mode-coupling, ðb1 � b2Þgffi 2nO � b1 found from Eqs. (60) and (61),
where one of the dominant system parameters is the disc rotation speed. In contrast, the distributed
friction stresses in the distributed-loaded contact model can generate the sufficient amount of the stationary
frictional mode-coupling satisfying 4b1b2o� ðO2

1 � O2
2Þ

2, where b1b2 is highly influenced by the system
geometry such as yc and kc [23,24]. The subsequent analytical and numerical analysis will be based
on the distributed-loaded contact model as described in Tables 2 and 3, where the rotation effects will be
considered.

As discussed earlier, the pre-stress terms in the stiffness matrix are much smaller than the contact
stiffness terms ðkcbpo � h=r2Þ. Particularly, the frictional follower forces rarely contribute to the
dynamic instability due to the domination of friction couples on both of ðb1 � b2Þg and b1b2 in the single-
doublet mode model. The statement is shown to be valid for the multiple-mode model as well. In the
multiple-mode equations of motion of Eq. (39), F and P can be seen to contribute little to system stiffness
matrix due to the dominating role of B and A. From Eq. (39), the eigensolutions of the system with and
without pre-stress terms F and P in the stiffness matrix are separately calculated and their positive real part
loci are drawn in the same figure (Fig. 5). In this plot, the difference between the two sets of results is not
visible since they are virtually identical. From this, it can be concluded that the contact modeling defined on
the undeformed surfaces of the disc can provide good approximate stability solutions for a car disc brake
system.

From the Routh–Hurwitz stability criterion applied on the reduced-order model, the contributions of
frictional mode-coupling terms, ðb1 � b2Þg and b1b2 to the instability have been summarized in terms of the
order of system parameters. However, the eigensolutions are required to provide the better qualitative
explanation on squeal propensity. The closed-form solutions of Eq. (50) for two special cases are provided and
the general solution of Eq. (50) is numerically calculated in the following.



ARTICLE IN PRESS

Fig. 5. Positive real part loci of disc-pad system (N ¼ 38) with and without pre-stress terms in the stiffness matrix for O ¼ 5 rad s�2,

m ¼ 0:5 and K½%� ¼ 100 � kc=knom; the real part loci of two solutions are virtually identical.

Fig. 6. The effects of b1b2 and �oð¼ DÞ on the binary instability for case 1 ðg ¼ 0; �d ¼ 0Þ; (—) for D ¼ 0:0, (- - - -) for D ¼ 50:0, (y) for

D ¼ �50:0, n ¼ 7; b1b2 generates the splitting in ReðlÞ and �o changes ReðlÞ regardless of m.
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Case 1. D � D1 ¼ D2, g ¼ 0 (no gyroscopic effect)
In the absence of the gyroscopic term g with identical modal damping coefficients (�d ¼ 0 and �o ¼ D), the

eigensolution of Eq. (50) becomes:

l ¼ �D=2	
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 2ðO2

1 þ O2
2Þ 	 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO2

1 � O2
2Þ

2
þ 4b1b2

qr
. (65)

For D2
52ðO2

1 þ O2
2Þ, Eq. (65) is approximated by:

lffi �D=2þ lU, (66)

where lU is the eigenvalue of the undamped system [23]:

lU ¼ 	
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðO2

1 þ O2
2Þ 	 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO2

1 � O2
2Þ

2
þ 4b1b2

qr
(67)

lU possesses the positive real parts with non-zero frequencies (flutter instability) only when
ðO2

1 � O2
2Þ

2
þ 4b1b2o0, implying that ReðlUÞ splits into positive and negative branches when ðO2

1 � O2
2Þ

2
þ

4b1b2o0 (Fig. 6). Here the damping factor, D of Eq. (66) shifts the entire loci of Re(l) negatively with an
increase in D. Moreover, the stationary frictional mode-coupling ðb1b2o0Þ is shown to be essential in
producing the binary flutter.
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Fig. 7. The effects of b1b2 and ðb1 � b2Þg on the binary instability for case 2 ð�o ¼ �d ¼ 0Þ; (—) for O ¼ 0:0, (- - - -) for O ¼ 5:0 rad s�1, (y)

for O ¼ 10:0 rad s�1, n ¼ 7; b1b2 generates the splitting in Reðl0Þ and ðb1 � b2Þg strengthens the splitting of Reðl0Þ.
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Case 2. D1 ¼ D2 ¼ 0, ga0 (gyroscopic effect without damping)
In the second case, the effect of the gyroscopic term g is assessed in the absence of damping. The

corresponding undamped characteristic equation takes the form:

l4 þ ðO2
1 þ O2

2 þ g2Þl2 þ ðb1 � b2Þglþ ðO2
1 � O

2
2 � b1b2Þ ¼ 0. (68)

A straightforward perturbation method is applied where the gyroscopic term and the eigensolution are
expressed by the perturbation parameter, �:

g ¼ � � go, (69)

l ¼ l0 þ � � l1 þOð�2Þ. (70)

By substituting Eqs. (69) and (70) into Eq. (68), the set of equations corresponding to the order of � are
given by:

�0 : l40 þ ðO
2
1 þ O2

2Þl
2
0 þ ðO

2
1 � O

2
2 � b1b2Þ ¼ 0 (71)

�1 : l20l1 þ 2ðO2
1 þ O2

2Þl1 þ ðb1 � b2Þgo ¼ 0, (72)

which result in:

l0 ¼ 	
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðO2

1 þ O2
2Þ 	 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO2

1 � O2
2Þ

2
þ 4b1b2

qr
, (73)

l1 ¼ 	goðb1 � b2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO2

1 � O2
2Þ

2
þ 4b1b2

q
, (74)

where l0 is identical to lU of Eq. (67) associated with the stationary frictional mode-coupling ðb1b2Þ. 1 is the
correction factor for the single-doublet mode model subject to gyroscopic loading. The singular case of l1 at
ðO2

1 � O2
2Þ

2
þ 4b1b2 ¼ 0 is not within the scope of this paper.

From Eq. (74), it is found that Reðl1Þ has both of the positive and negative branches at
ðO2

1 � O2
2Þ

2
þ 4b1b240, whereas they coalesce to zero when ðO2

1 � O2
2Þ

2
þ 4b1b2o0. Therefore, the coalescing

point of Reðl1Þ is identical with the split point of Reðl0Þ in such a manner that Reðl1Þ ¼ 0 and Reðl1Þ40
correspond to Reðl0Þ40 and Reðl0Þ ¼ 0, respectively, as described in Fig. 7. Since the two branches of ReðlÞ
are smoothly split, it can be also called the ‘‘smoothing effect’’ attributed to the gyroscopic frictional mode-
coupling. The general description of the smoothing effect on a circulatory system can be referred to [28].
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Equivalently, the gyroscopic frictional mode-coupling, ðb1 � b2Þgo in Eq. (74) contributes to the positive real
parts of Eq. (70) in the order of e1 for Re(l0) ¼ 0 and at most Oð�2Þ for Re(l0)40. It indicates that the non-
zero rotation speed associated with go guarantees the dynamic instability if ðb1 � b2Þgoa0 for the undamped
binary mode pair. In summary, the stationary and gyroscopic frictional mode-coupling effects can contribute
to the binary flutter of a doublet mode pair in the order of e0 and e1, respectively, depending on system
parameters.

Case 3. D1aD2, ga0 (general disc operational case)
The exact eigensolution of Eq. (50) is now numerically determined and interpreted on the basis of the

perspectives obtained from the approximate analytical solutions. The radial dissipative effect, known to be
proportional to 1=O, is seen to be effective at low speeds as shown in Figs. 8a and b. Since the radial
dissipative terms ðRd1;Rd2Þ are also proportional to m, the entire loci of the real parts rotate clockwise around
the pivot point ðm ¼ 0Þ, leading to the decrease of Re(l). This will be called the ‘‘tilting effect’’. Besides, the
non-equally structural damping in the coupled modes (without the radial dissipative and negative friction-
slope terms) has been found to have the destabilizing ‘‘smoothing effect’’ [26–29]. In this doublet mode model,
the structural damping coefficients of the doublet mode pair are assumed to be identical. Since the radial
dissipative terms of the disc cosine and sine modes produce the overall separation of their modal damping
coefficients as in Eqs. (B.1) and (B.2), however, the ‘‘smoothing effect’’ caused by the non-equal damping is
involved as well. Therefore, it is concluded that the two branches of Re(l) of the undamped disc doublet
modes undergo some modification due to the ‘‘smoothing effect’’ of the gyroscopic term and both the ‘‘tilting
and smoothing effects’’ of the radial dissipative terms.
Fig. 8. The effects of b1b2, ðb1 � b2Þg and physical damping ðD1;D2Þ on the binary instability of the structurally damped system

ðxn ¼ 0:002Þ; (a) n ¼ 7 (Reðl0Þ loci split near m ¼ 0:4), (b) n ¼ 2 (Reðl0Þ ¼ 0 up to m ¼ 0:7); (—): O ¼ 2:0 rad s�1, (- - - -): O ¼ 8:0 rad s�1,
(- � -): O ¼ 20 rad s�1, (y): O ¼ 50 rad s�1.
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The major difference between Figs. 8a and b is that the 7th doublet mode ðn ¼ 7Þ retains mode-coupling
type instability ðReðl0Þ40Þ, but the 2nd doublet mode ðn ¼ 2Þ does not ðReðl0Þ ¼ 0Þ. Here, the binary
instability can be stated in terms of rotation speed and mode-coupling type instability as the followings. For
the mode pair having zero Reðl0Þ, high rotation speed is required for Re(l)40. For the mode pair with
Re(l0)40, however, the positive Re(l) can arise more easily even at low speeds.

In application to the automotive brake squeal problem, the rotation speed can be considered to be low and
the braking system will have structural damping. Therefore, the stationary frictional mode-coupling ðb1b2Þ

determining Reðl0Þ is the essential part as stated in Figs. 7 and 8. Since b1b2 is shown to depend on the contact
area in Table 1, a brake model should have the distributed-loaded contact model not to miss this substantial
squeal source. Although this conclusion is based on the reduced-order model, it will be shown in the next
section that it is also valid for a multiple degree-of-freedom model. Hereafter, the flutter instability of the
multiple-mode model is numerically investigated, where the 12 modes (6 rigid and 6 vibration modes) of each
pad and the 20 disc vibration modes are used in the multiple-mode model.
3.3. Stability results based on constant friction coefficient

Tseng and Wickert [11] investigated the stability of a rotating disc subject to the distributed frictional
follower force. They demonstrated that ReðlÞ of the non-conservative gyroscopic system is influenced by O
over the broad range of speed (beyond the critical speed). In automotive applications, however, the squeal
analysis on the non-conservative gyroscopic brake system is limited to low speeds. For this, Hochlenert et al.
[17] and Ouyang and Mottershead [19] used a slowly-rotating annular plate and showed that the squeal
propensity is proportional to the increase of the rotation speed under the constant friction coefficient.

As mentioned in the previous sections, the squeal propensity of the mode-coupled modes under rotation
effect should be investigated by using a disc brake model with finite contact area. The one doublet mode model
has shown that Re(l) of a non-conservative gyroscopic brake system is perturbed from that of the system
without dissipative and gyroscopic effects with respect to O. The radial dissipative term in a dissipative matrix
normally decreases Re(l) as stated in Eq. (66), where the radial dissipative effect is inversely proportional to O.
In contrast, the gyroscopic term increases Re(l) due to the gyroscopic frictional mode-coupling goðb1 � b2Þ of
Eq. (74) which is proportional to O. As a result, there is a certain speed Ō corresponding to the cancellation of
Fig. 9. Modal stability boundaries (N ¼ 38) for constant mð¼ 0:5Þ; the occurrence of the positive real parts with respect to kc is marked on

the frequency loci by (a) (J) for the rotating disc model, (b) (&) for the rotation-free disc model, O ¼ 5 rad s�1 and xn ¼ 0:002.
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Fig. 10. flutter modes for the rotating disc (—) and the rotation-free disc (- - - -) at K ¼ 300ð%Þ in m�Hz domain, (a) mode ‘‘A’’, (b) mode

‘‘B’’, and m�ReðlÞ domain (c) mode ‘‘A’’, (d) mode ‘‘B’’.
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these rotation effects on Re(l). This will be shown to be applicable for the multiple-mode model as well in the
following.

At Ō, it is assumed that the rotation effects are diminished in the multiple-mode model, resulting in the
following equations of motion neglecting rotation-dependent elements in Eq. (39):

€aþ C_aþ ðKs þ KnsÞa ¼ 0, (75)

where the eigensolutions provide the mode-coupling instability (Re(l0)40) caused by the stationary frictional
mode-coupling. It will be referred to as the rotation-free model. The further simplification can be done by
neglecting P and F of Eqs. (41) and (42) as stated in Eq. (39). Figs. 9a and b illustrate the flutter
modes (Re(l)40) on their frequency loci (at m ¼ 0:5) over the range of contact stiffness for both the rotating
and rotation-free disc brake model. The stability boundaries of the flutter modes in the rotation-free
model are seen to approximate those found from the rotating disc model at O ¼ 5 rad s�1. It indicates that the
rotation-free disc approximation is valid in determining stability boundaries of the rotating disc brake near
certain speeds which are normally low-to-moderate speeds. Therefore, Eq. (75) is an approximate set of
equations of motion to be used for the prediction of the flutter instability of a rotating disc brake with
distributed contact stresses near the certain speed Ō. It should be noted that the rotation-free model is the disc
brake model with circumferential friction force in the absence of gyroscopic terms and the radial component
of friction force.

Two of the flutter modes in Fig. 9 are chosen for investigating the rotation effect on squeal propensity. The
eigenvalues of mode ‘‘A’’ and mode ‘‘B’’ in Fig. 9 are shown as functions of friction coefficient in Fig. 10. In
the m�ReðlÞ domain (Figs. 10c and d), the critical value of m for squeal with and without rotation effects are
found to be close.

From Figs. 9 and 10, two aspects are to be highlighted. The first aspect is the rotation-free disc
approximation as discussed in Fig. 9. The second aspect is that the stationary frictional mode-coupling
mainly contributes to the flutter instability. Since the rotation effects are seen to be insignificant in
destabilizing the system, the stationary frictional mode-coupling is the dominant destabilizing factor in
causing the splitting of the real part loci, and therefore, resulting in the flutter instability of the disc brake
system (Re(l)40).
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Fig. 11. The higher ReðlÞ of pair loci with respect to O [rad/s] for the flutter modes in Fig. 9, (a) mode ‘‘A’’, (b) mode ‘‘B’’.

Fig. 12. Friction curves, (a) friction coefficient, ms ¼ 0:5, mk ¼ 0:3, a ¼ 1, (b) the slope of friction coefficient, rc ¼ 116mm.
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Fig. 11 illustrates the influence of the rotation speed on the real parts of eigenvalues. At low-to-moderate
speeds in the automotive application, the rotation effects change the squeal onset (Re(l) ¼ 0) little. At the very
low speeds, however, the rotation effects effectively contribute to the stabilization of system equilibrium, and
therefore, the rotation-free disc approximation is not appropriate. It is notable that the stabilization associated
with rotation speed arises from the radial component of friction stresses in such a way that the dissipative
effect of radial friction is proportional to 1=O.
3.4. Stability results based on rotation-dependent friction coefficient

The previous numerical results of the multiple-mode model were based on the constant friction coefficient,
where the radial dissipative and gyroscopic destabilizing effects were discussed as the rotation effects. From
these previous results, the propensity for flutter instability was seen to grow with increasing the rotation speed
as depicted in Fig. 11. However, the friction coefficient in disc brake system is rather a function of the rotation
speed as shown by a brake dynamometer test in Ref. [30]. If friction coefficient is the speed-dependent function
as shown in Fig. 12a, the squeal propensity for rotation speed may be altered. Moreover, the negative slope
corresponding to friction coefficient in Fig. 12b is shown to change with respect to rotation speed. As a result,
the magnitude and slope of the friction coefficient will appear as one of the rotation effects.

It has been found that Re(l) is influenced by destabilizing factors such as the stationary frictional mode-
coupling (mode-coupling type), gyroscopic frictional mode-coupling and negative slope effects, and stabilizing
factors such as the structural modal damping and radial dissipative effects. Consequently, the eigenvalues are
dependent of the disc rotation speed as depicted in Fig. 13. In this figure, the real part loci of mode ‘‘A’’ and
mode ‘‘B’’ are seen to increase as the disc rotation speed decreases up to certain speeds. Below the certain
speeds, the squeal propensity of mode ‘‘A’’ and mode ‘‘B’’ decreases. Here, the real part of the mode ‘‘B’’ drop
below O ¼ 2:5 rad s�1. However, the squeal propensity of the mode ‘‘A’’ continues to grow with the decrease
of rotation speed nearly up to zero rotation speed.
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Fig. 13. Rotation-dependent system eigenvalues of disc-pad coupled system with friction curve.
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4. Conclusions and discussion

A friction-engaged disc brake system becomes non-conservative due to frictional mode-coupling among
system modes and the negative slope of friction coefficient with respect to sliding speed. The frictional mode-
coupling originates from the friction couple and the frictional follower force. While the friction couple is the
moment produced by the circumferential component of friction force, the frictional follower force is literally
the loading generated by the direction change of friction force due to the disc rotation and deformation. In
automotive applications, the non-conservative frictional mode-coupling mostly stems from the friction couple,
and the contribution of the frictional follower force is negligible. From above, the contact model of describing
the contact kinematics on the undeformed surfaces of the disc and pad is considered one practical
approximation for contact modeling.

The single-doublet mode model has been used to show that the non-conservative frictional mode-coupling can
be classified as either the stationary or gyroscopic frictional mode-coupling. The stationary frictional mode-
coupling generates the mode-merging type instability found to be the substantial brake squeal mechanism, whereas
the gyroscopic frictional mode-coupling makes the supplementary influence on the mode-coupling destabilization.
This paper has shown that the contact stresses should be defined over the true contact area, and not as point
contact, in order to capture the stability character arising from the stationary frictional mode-coupling.

From the analytical and numerical investigations on squeal propensity for rotation speed presented here,
the steady sliding at the contact surface is shown to be stabilized on the verge of stop due to the dissipative
nature of the radial slip. For low-to-moderate speeds, the radial dissipative effect is diminished, and the
stationary frictional mode-coupling and the rotation destabilizing effects dominate the equilibrium instability.
It is notable that the rotation-free disc brake model can predict the approximate equilibrium instability of the
rotating disc brake model at low-to-moderate speeds under the assumption of constant friction coefficient.

For a comprehensive predictive model, the actual relationship between m and sliding speed should be
considered. The other rotation effect arises from the negative slope of m that is derived by linearizing the
friction curve. The numerical results of this comprehensive model have shown that there is a speed
corresponding to maximum squeal propensity for each flutter mode.
Appendix A. The virtual work terms per area on the top contact associated with system matrices

Rd :
m1po

rO
ð� _up1 þ _uÞdðup1 � uÞ, (A.1)
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Ns : m1podðv
p1 � vÞ, (A.2)

P :
po

h=2
½ð1þ m21Þvdðv

p1 � vÞ þ udðup1 � uÞ�, (A.3)

B : m1kcð�wp1 þ wÞdðvp1 � vÞ, (A.4)

F : m1po
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, (A.5)

where v � hua; ehi, vp1 � hub; ehi, u � hua; eri and up1 � hub; eri.
Appendix B. The elements of the one-doublet mode model

Rd1 ¼
2po

O
h

2

� �2 Z ro

ri

@Rn

@r

� �2

m
ðrÞdr �

Z yc=2

�yc=2
cos2ny dy, (B.1)

Rd2 ¼
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ri
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where m
 ¼ m1jff ig¼0
and v;t ¼ @v=@t. Here, the pre-stress po terms of Eqs. (B.7) and (B.8) are negligible due to

kcbpoðh=r2Þ, which results in b140 and b2o0. The stability boundaries with and without the pre-stress terms
in the stiffness matrix are virtually identical in the single-doublet mode model and the multiple-mode model as
shown in Fig. 5. The pre-stress po terms in b1 and b2 will be omitted in the stability analysis throughout the
paper except Section 3.2 to clarify their contribution on the dynamic instability in terms of the order of system
parameters.
Appendix C. The Routh–Hurwitz criterion

c1c2 � c3 ¼ fD1O2
1 þD2O2

2 þ ðD1 þD2ÞðD1D2 þ g2Þg � ðb1 � b2Þg, (C.1)

ðc1c2 � c3Þc3 � c21c4 ¼ D1O2
1 þD2O2

2 þ ðD1 þD2ÞðD1D2 þ g2Þ
� 	
� ðD2O2

1 þD1O2
2Þ þ ðD1 þD2Þ

2
� ðO2

1O
2
2 � b1b2Þ

þ fD1O2
1 þD2O2

2 þ ðD1 þD2ÞðD1D2 þ g2Þg

� ðb1 � b2Þg� ðD2O2
1 þD1O2

2Þ � ðb1 � b2Þg� ðb1 � b2Þ
2g2. (C.2)

Letting D1 � �oð40Þ, D2 � �o þ �dð40Þ and g ¼ 0, (C.1) and (C.2) are written in the perturbation form of �o
and �d:

c1c2 � c3 ¼ �
0
o½�dO

2
2� þ �

1
o½ðO

2
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2
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2
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2
d½�o�, (C.3)
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